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• Recurrent Neural Networks, Long Short Term Memory networks, 
Gated Recurrent Unit, Echo State Networks, etc. 

• The idea is to have stored states and feedback loops (or time 
delays) to keep memory of the past

• The advantage is to have a more flexible and less parametrised 
model wrt traditional time series models (e.g. ARMA) 

• However sometimes one is interested in estimating parameters of 
deterministic or stochastic time series models 
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• In Economics, Finance, Social Sciences, etc. one builds a structural 

model of a given system, which describes the choices of the agents and 
the interactions between them. 

• For example Agent Based Models are microscale models depending on 
a large number of parameters

• These parameters are unobservable or latent: risk aversion, memory 
scale of agents, interaction between agents, expectations of agents, etc

• Inferring these parameters (for example from the time series generated 
by the model) from empirical data is important, also for obtaining 
calibrated models on which policy experiments are run

• More generally, inferring interactions from correlation (physics, 
neuroscience, social science, etc). 
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• If the likelihood function  is available, the posterior distribution of  given 
observed data  can be computed via Bayes' rule 
 

                                   

p(X |θ) θ
xobs

π(θ |xobs) =
π(θ)p(xobs |θ)

p(xobs)

• From the knowledge of the posterior  we can estimate  via argmax or 
expectation 

π(θ |xobs) θ
𝔼π[θ |X]

• The likelihood function must be known in closed form or sampled in MCMC 
schemes

• What can we do if the likelihood is not known in closed form, but we can simulate 
the model  given ?ℳ θ
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Approximate Bayesian Computation

• However when , the event  has probability 0, and hence Algorithm 
1 is unable to produce any draws.

xobs ∈ ℝp X′ = xobs

• One can introduce a low-dimensional summary statistic  and use the followingS

π(θ | ∥S(X′ ) − S(xobs)∥ < ϵ) ≈ π(θ |xobs)
Jiang et al. 2017
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Deep Neural Networks (DNN) which is expected to effectively learn a good 
approximation to the posterior 

X

𝔼π[θ |X]

• The minimization problem is 
 

                                            

 
where  denotes a DNN with parameter .

min
β

1
N

N

∑
i=1

∥fβ(X(i)) − θ(i)∥2
2

fβ β

• The resulting estimator  approximates  and serves as 
the summary statistic for ABC.

̂θ(X) := f ̂β(X) 𝔼π[θ |X]

Jiang et al. 2017
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θ1 ∈ [−2,2], θ2 ∈ [−1,1], θ2 ± θ1 ≥ − 1 ϵt ∼ iid(0,σ2)
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β

1
N

N

∑
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∥fβ(X(i)) − θ(i)∥2
2 N = 105

Uniform prior on  θ1, θ2

Input: Time series of 
length 100

Output: parameters θ1, θ2

3-layer DNN with 100 neurons on each hidden layer 
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Estimating noisy dynamical systems from 
short time series with Deep Neural Networks 
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where  is an estimation of the risk of the investment (i.e. the variance of price increments) 
in the n days of the previous quarter 

σ2
e,t = ωσ2

e,t−1 + (1 − ω) ̂σ2
e,t
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• In the attempt of keeping the planned leverage, the bank trades and this moves the price of 
the assets, increasing also its variance.  When trading  shares, the price moves (on 
average) by  

V
V/γ

Lillo et al 2021
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An example from real data
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p(ϕt+1 |ϕt, θ)Joint probability

ℒ(θ) = −
T − 1

2
log 2π −

1
2

T−1

∑
t=1

log σ2(ϕt; θ) −
T−1

∑
t=1

(ϕt+1 − T(ϕt; θ))2

2σ2(ϕt; θ)

Log-likelihood function

θ* = arg max
θ∈Ω

ℒ(θ)
Maximum Likelihood Estimator
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Problems
1. The likelihood function is typically non-convex in the 

parameters and its numerical optimization can end up in one 
of the many local maxima

2. We may observe only one event out of two, or even out of 
three, four, etc. If we observe, for instance, only the second 
iterate of the process, the observed map is  
 

 
 
and the transition probabilities   are no longer 
Gaussian (as it would be the case if we observe the first 
iterate). 

ϕt+2 = T(T(ϕt; θ); θ) + σ(ϕt; θ)ϵt) + σ(ϕt+1; θ)ϵt+1

p(ϕt+2 |ϕt; θ)
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Output: Parameters 
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The NN architecture

The input is the whole time series (T=59)

The output are the two parameters of 
interest

The number of iterations is 
determined by another NN
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Data 
• Data set of US Commercial Banks and Savings and Loans 

Associations provided by the Federal Financial Institutions 
Examination Council (FFIEC)


• Quarterly balance sheet data


• We compute the leverage from the balance sheet


• Time period going from March 2001 to December 2014, for a total 
of 59 quarters.


• We have data for 5031 banks


• 5031 time series of length T=59



Results



Results



Results



Results

Larger banks are found more likely in the dynamical core (and therefore have 
more likely a chaotic leverage dynamics) 
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Simulation from the map
Comparing with other methods

Chaos Detection Tree 
Algorithm (Toker et al. 
2020) based on entropy 
and surrogate time 
series

For short time series (and 
strongly for iterated maps) 

Chaos Detection Tree 
Algorithm wrongly assign 

stochastic nature to chaotic 
time series  

Real bank data



Some conclusions



Some conclusions
• Deep Neural Networks can be very effective in estimating parameters of a 

(time series) model, especially when the likelihood function is not known 
in closed form



Some conclusions
• Deep Neural Networks can be very effective in estimating parameters of a 

(time series) model, especially when the likelihood function is not known 
in closed form

• Two approaches: direct (the input of the DNN is the time series) vs 
indirect (the input of the DNN are statistics of an auxiliary model)



Some conclusions
• Deep Neural Networks can be very effective in estimating parameters of a 

(time series) model, especially when the likelihood function is not known 
in closed form

• Two approaches: direct (the input of the DNN is the time series) vs 
indirect (the input of the DNN are statistics of an auxiliary model)

• The indirect DNN does not require a machine for each time series length



Some conclusions
• Deep Neural Networks can be very effective in estimating parameters of a 

(time series) model, especially when the likelihood function is not known 
in closed form

• Two approaches: direct (the input of the DNN is the time series) vs 
indirect (the input of the DNN are statistics of an auxiliary model)

• The indirect DNN does not require a machine for each time series length

• We show that DNN is effective in estimating parameters of short time 
series from dynamical systems with heteroschedastic noise



Some conclusions
• Deep Neural Networks can be very effective in estimating parameters of a 

(time series) model, especially when the likelihood function is not known 
in closed form

• Two approaches: direct (the input of the DNN is the time series) vs 
indirect (the input of the DNN are statistics of an auxiliary model)

• The indirect DNN does not require a machine for each time series length

• We show that DNN is effective in estimating parameters of short time 
series from dynamical systems with heteroschedastic noise

• The proposed method is especially useful when we are not sure we are 
observing the dynamical system every elementary time step



Some conclusions
• Deep Neural Networks can be very effective in estimating parameters of a 

(time series) model, especially when the likelihood function is not known 
in closed form

• Two approaches: direct (the input of the DNN is the time series) vs 
indirect (the input of the DNN are statistics of an auxiliary model)

• The indirect DNN does not require a machine for each time series length

• We show that DNN is effective in estimating parameters of short time 
series from dynamical systems with heteroschedastic noise

• The proposed method is especially useful when we are not sure we are 
observing the dynamical system every elementary time step

• Financial application: by using the DNN estimation method, we show that 
for a sizeable fraction of (large) banks the leverage dynamics is chaotic


