Centro AlmaAI - Hard Sciences: Kick-off Workshop Bologna, April 28, 2021

NIELE TANTARI **STATISTICAL MECHANICS FOR MACHINE** LEAKNINU: KELENI AUVANLED

ALMA MATER STUDIORUM UNIVERSITÀ DI BOLOGNA

ΝδΑΜ

OUTLINE OF THE TALK

- Introduction: Restricted Boltzmann Machines
- Statistical Mechanics and data representation;
- Statistical Mechanics of the Learning Process;
- Statistical Mechanics for new algorithms;

INTRODUCTION **RESTRICTED BOLTZMANN MACHINES**

RESTRICTED BOLTZMANN MACHINES

visible layer

UNSUPERVISED LEARNING

- Present a series of inputs

Probabilistic model Training set (input)

 $\{\sigma_a\} a = 1, \dots, M$

$$\begin{split} P_{\xi}(\sigma,\tau) &= Z^{-1}P_{\sigma}(\sigma)P_{\tau}(\tau)e^{-E(\sigma)}\\ Z &= \int d\sigma d\tau \ P_{\sigma}(\sigma)P_{\tau}(\tau)e^{-E(\sigma)} \end{split}$$

$$E(\sigma,\tau;\xi)=-\sum_{i,\mu}\xi^{\mu}_{i}\sigma_{i}\tau^{\mu}$$

\triangleright Learn the ξ so that the inputs will be low energy configuration of the visible units

,τ;ξ) ,τ;ξ)

DEEP BOLTZMANN MACHINES

- Obtain an internal representation of data
- Storing patterns of information
- Disentangling and organizing different levels of correlations

FEED FORWARD NEURAL NETWORKS

SUPERVISED LEARNING ...learn a mapping between input and output

Supervised fine tuning (Gradient Descent)

 $y = f(\xi_1 x_1 + \xi_2 x_2 + \xi_3 x_3)$

STATISTICAL MECHANICS AND DATA REPRESENTATION

STATISTICAL MECHANICS AND DATA REPRESENTATION

RBM WITH RANDOM WEIGHTS

visible layer

$$P(\sigma,\tau;\boldsymbol{\xi}) = Z^{-1}P_{\sigma}(\sigma)P_{\tau}(\tau)e^{\sum_{i,\mu}\xi_{i}^{\mu}\sigma_{i}\tau^{\mu}}$$

visible layer

$$P(\sigma; \boldsymbol{\xi}) = Z^{-1} P_{\sigma}(\sigma) e^{\sum_{\mu} \psi(\boldsymbol{\xi}^{\mu} \cdot \sigma)}$$

Generalized Hopfield Model

Amit et al (1985)

RBM WITH RANDOM WEIGHTS

Order parameters

- $M^{\mu} = rac{1}{N} \sum_{i} \xi^{\mu}_{i} \left\langle \sigma_{i} \right\rangle$
- $\mathbf{q} = rac{1}{N} \sum_{i} \left< \sigma_{i} \right>^{2}$

global feature (Prototype)

Phase diagram (Amit Gutfreund Sompolinsky 1985)

γ̈́

Paramagnetic $q = M^{\mu} = 0$ SG $q \neq 0$ $\mathsf{M}^{\mathsf{\mu}} = \mathsf{0}$ **Retrieval** $M^1 \neq 0$ $\mathbf{q}
eq \mathbf{0}$

RBM WITH LOW RANK SIGNAL WEIGHTS

STATISTICAL MECHANICS AND DATA REPRESENTATION

RBM WITH DILUTED WEIGHTS

Figure from Agliari et al (2012)

0.2

0

0

STATISTICAL MECHANICS AND THE LEARNING PROCESS

FEATURE SIMILARITY

PHASES OF LEARNING (STAGE 1)

FEATURES

2.5 -0.000 50 2.0 0 0 100 . 1.5 150 -0 . 0 1.0 200 0.5 250 0000 0.0 250 -0.6-0.40.6 100 150 200 -0.80.4 0.8

- the first strongest mode of the data is learned by all features;
- high positive (or negative) feature similarity;
- the generated samples have a high overlap with the learned features;

FERROMAGNETIC PHASE

Figures from Decelle et al (2020)

PHASES OF LEARNING (STAGE 2)

- many modes emerged: features are global and close to modes ;
- smaller similarity but broad similarity distribution;
- the generated samples correspond basically to the learned features with few variety.

FERROMAGNETIC **MATTIS PHASE**

PHASES OF LEARNING (STAGE 3)

- features are much more localized (like the case study with diluted weights);
- feature similarity distribution around zero with smaller variance
- the generated samples look very similar to the provided dataset

FERROMAGNETIC **COMPOSITIONAL** PHASE

STATISTICAL MECHANICS AND THE LEARNING PROCESS

SIZE OF THE DATASET AND LEARNING FEASIBILITY **TEACHER** RBM $\sigma^{a} \sim P(\sigma|\xi)$

• Direct Problem: given $\{\xi_i^{\mu}\}$ sample $\{\sigma^a\}_{a=1}^{M}$ • Inverse Problem: given $\{\sigma^a\}_{a=1}^{M}$ find $\{\xi_i^{\mu}\}$

$$) = Z^{-1} \mathbb{E}_{\tau} e^{\sum_{\mu,i} \xi_{i}^{\mu} \sigma_{i} \tau^{\mu}}$$

RBM Unsupervised Learning in a controlled setting

STUDENT

RBM

SIZE OF THE DATASET AND LEARNING FEASIBILITY

How many samples M are necessary to reconstruct the teacher weights?

Posterior Prior Likelihood $P(\boldsymbol{\xi}|\{\sigma^a\}_{a=1}^M) \propto P(\boldsymbol{\xi}) \prod_a P(\sigma^a|\boldsymbol{\xi}) \quad \text{DIRECT MODEL}$

STATISTICAL MECHANICS FOR NEW ALGORITHMS

STATISTICAL MECHANICS FOR NEW ALGORITHMS

training set of data

GRADIENT ASCENT

 $\langle \tau_{\mu} \sigma_{i} \rangle_{sa}$

visible layer

Contrastive Divergence is used to evaluate the difficult term of the momentum-matching condition

Weights can be found maximizing the log-likelihood of a

$$\sum_{i=1}^{M} \left(-\log Z(\boldsymbol{\xi}) + \log \int dP(\tau) e^{-E_{\boldsymbol{\xi}}(\sigma^{a},\tau)} \right)$$

$$\boldsymbol{\xi}_{i}^{\mu} = \boldsymbol{\xi}_{i}^{\mu} + \left(\left\langle \boldsymbol{\tau}_{\mu}\boldsymbol{\sigma}_{i}\right\rangle_{\text{sample}} - \left\langle \boldsymbol{\tau}_{\mu}\boldsymbol{\sigma}_{i}\right\rangle_{\text{RBM}}\right)$$

$$\begin{split} _{\mu}\sigma_{i}\rangle_{sample} &= M^{-1}\sum_{a=1}^{M}\int dP(\tau^{\mu})P(\tau^{\mu}|\sigma^{a};\xi)\tau_{\mu}\sigma_{i}^{a} \\ \left\langle \tau_{\mu}\sigma_{i}\right\rangle_{RBM} &= \frac{\partial}{\partial\xi_{i}^{\mu}}\log Z(\xi) \end{split}$$

STATISTICAL MECHANICS FOR NEW ALGORITHMS

Finite temperature optimization

Inverse problem and dual TAP equations

Decelle et al (2019)

Free energy approximation: (Zero temperature optimization) **Pseudo-Likelihood optimization** Decelle et al (2014) O(1/N) expansion of the log-likelihood Cocco et al. (2011) **Belief Propagation and Bethe free energy Tramel et al. (2018)** High temperature expansion and TAP equations Gabriè et al (2015)

 $P(\boldsymbol{\xi}|\{\sigma^a\})$

POSTERIOR DISTRIBUTION

HIGH TEMPERATURE EXPANSION AND TAP EQUATIONS

$$\log Z(\xi) = A(\beta = 1)$$

Free energy

- Expansion around $\beta = 0$
- Find the minimum $\mathbf{m} = \{\mathbf{m}_i^{\sigma}, \mathbf{m}_{\mu}^{\tau}\}$

$A(\beta) = \log \sum_{\sigma,\tau} e^{-\beta E_{\xi}(\sigma,\tau)} = \inf_{m} \Lambda(m,\beta)$

Local magnetizations

$$\label{eq:minimum} \left. \begin{array}{l} m_i^\sigma = \psi \left(b_i + \sum_\mu \xi_i^\mu m_\mu^\tau + \cdots \right. \\ m_\mu^\tau = \psi \left(c_i + \sum_i \xi_i^\mu m_i^\sigma + \cdots \right. \end{array} \right. \end{array} \right.$$

TAP EQUATIONS

HIGH TEMPERATURE EXPANSION AND TAP EQUATIONS

DUAL TAP EQUATIONS

posterior distribution

$$\begin{split} \mathsf{P}(\boldsymbol{\xi}|\{\boldsymbol{\sigma}^{a}\}_{a=1}^{\mathsf{M}}) &= \mathsf{Z}^{-1}e^{-\hat{\mathsf{E}}_{\sigma}(\boldsymbol{\xi})} \\ &= \mathsf{P}_{0}(\boldsymbol{\xi})\cdot\mathsf{Z}^{-1}e^{-\hat{\mathsf{E}}_{\sigma}(\boldsymbol{\xi}^{1})}\cdot\mathsf{Z}^{-1}e^{-\hat{\mathsf{E}}_{\sigma}(\boldsymbol{\xi}^{2})}\cdot...\mathsf{Z}^{-1}e^{-\hat{\mathsf{E}}_{\sigma}(\boldsymbol{\xi}^{\mathsf{P}})} \\ & \bullet \text{ Mezard 2017} \\ \hline \mathsf{m}_{i}^{t+1} &= \tanh\left(\beta\sum_{j=1}^{\mathsf{N}}\mathsf{J}_{ij}\mathsf{m}_{j}^{t} - \frac{\alpha\beta}{1-\beta(1-q)}\mathsf{m}_{i}^{t}\right) \quad \textbf{FINITE TEMPERATURE MMAP APPRO} \\ & \boldsymbol{\xi}_{i}^{\mu} &= \operatorname{sign}(\mathsf{m}_{i}^{\mu}) \end{split}$$

Assuming the data generated from un unknown RBM (teacher), we can consider the

GENERALIZED HOPFIELD MODEL

DUAL TAP EQUATIONS

FIG. 2. Overlap between the TAP solutions and the teacher's patterns. The system size is N = 1000, P = 20, $\beta = 2$, i.e. data is generated in the retrieval phase. Inference is done with P' = 25 students observing M = 200 samples.

A teacher-student experiment

REFERENCES

- Decelle, A., Hwang S., Rocchi J., Tantari D. (2019) Inverse problems for structured data sets using wisely TAP equations and RBM, preprint arXiv:1906.11988
- Barra, A., Genovese, G., Sollich, P., Tantari, D. (2017) Phase transitions in Restricted Boltzmann Machines with generic priors. Physical Review E, 96(4), 042156.
- Barra, A., Genovese, G., Sollich, P., Tantari, D. (2018) Phase diagram of restricted Boltzmann machines and generalized Hopfield networks with arbitrary priors. Physical Review E, 97(2), 022310.
- Barra, A., Contucci, P., Mingione, E., & Tantari, D. (2015, March). Multi-species mean field spin glasses. Rigorous results. In Annales Henri Poincaré (Vol. 16, No. 3, pp. 691-708). Springer Basel.
- M Gabrié, EW Tramel, F Krzakala, Training Restricted Boltzmann Machine via the Thouless-Anderson-Palmer free energy. Advances in Neural Information Processing Systems, 640-648
- Decelle, A., & Furtlehner, C. (2020). Restricted Boltzmann Machine, recent advances and mean-field theory. Chinese Physics B.

