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STATISTICAL MECHANICS FOR MACHINE LEARNING: RECENT ADVANCES

OUTLINE OF THE TALK

▸ Introduction: Restricted Boltzmann Machines 

▸ Statistical Mechanics and data representation; 

▸ Statistical Mechanics of the Learning Process;  

▸ Statistical Mechanics for new algorithms;
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INTRODUCTION: RESTRICTED BOLTZMANN MACHINES

RESTRICTED BOLTZMANN MACHINES

‣ Present a series of inputs
UNSUPERVISED LEARNING
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INTRODUCTION: RESTRICTED BOLTZMANN MACHINES

DEEP BOLTZMANN MACHINES

 

‣ Obtain an internal representation of data 
‣ Storing patterns of information 
‣ Disentangling and organizing different levels of correlations 



INTRODUCTION: RESTRICTED BOLTZMANN MACHINES

FEED FORWARD NEURAL NETWORKS

…SUPERVISED LEARNING
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...learn a mapping between input and output 

‣ Supervised fine tuning (Gradient Descent)
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STATISTICAL MECHANICS AND DATA REPRESENTATION

RBM WITH RANDOM WEIGHTS 

‣ Multi-species spin glass (SK) model ‣ Generalized Hopfield Model
Amit et al (1985)Barra et al (2015)
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STATISTICAL MECHANICS AND DATA REPRESENTATION

RBM WITH RANDOM WEIGHTS 
‣ global feature         
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STATISTICAL MECHANICS AND DATA REPRESENTATION

RBM WITH LOW RANK SIGNAL WEIGHTS 
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STATISTICAL MECHANICS AND DATA REPRESENTATION

RBM WITH DILUTED WEIGHTS 

Figure from Agliari et al (2012)
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STATISTICAL MECHANICS AND THE LEARNING PROCESS

PHASES OF LEARNING  (STAGE 1)

FEATURES SAMPLESFEATURE SIMILARITY

‣ the first strongest mode of the data is learned by all features;  
‣ high positive (or negative) feature similarity; 
‣ the generated samples have a high overlap with the learned features; 

FERROMAGNETIC 
PHASE

Figures from Decelle et al (2020)



STATISTICAL MECHANICS AND THE LEARNING PROCESS

PHASES OF LEARNING  (STAGE 2)

FEATURES SAMPLESFEATURE SIMILARITY

‣ many modes emerged: features are global and close to modes ;  
‣ smaller similarity but broad similarity distribution; 
‣ the generated samples correspond basically to the learned features with few variety. 

FERROMAGNETIC 
MATTIS PHASE



STATISTICAL MECHANICS AND THE LEARNING PROCESS

PHASES OF LEARNING  (STAGE 3)

FEATURES SAMPLESFEATURE SIMILARITY

‣ features are much more  localized (like the case study with diluted weights); 
‣ feature similarity distribution around zero with smaller variance 
‣ the generated samples look very similar to the provided dataset 
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STATISTICAL MECHANICS AND THE LEARNING PROCESS

‣ Direct Problem: given         sample {͓E}1E=�{͎͌
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in a controlled setting



STATISTICAL MECHANICS AND THE LEARNING PROCESS

SIZE OF THE DATASET AND LEARNING FEASIBILITY 
‣ How many samples M are necessary to reconstruct the teacher weights?  
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RBM LEARNING
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‣ Weights can be found  maximizing  the log-likelihood of a 
training set of data

STATISTICAL MECHANICS FOR NEW ALGORITHMS



DIFFERENT IDEAS FROM STATISTICAL MECHANICS  

‣ Pseudo-Likelihood optimization 
Decelle et al (2014)

‣ O(1/N) expansion of the log-likelihood 
Cocco et al. (2011) 

‣ Belief Propagation and Bethe free energy 
Tramel et al. (2018) 

‣ High temperature expansion and TAP equations  
Gabriè et al (2015)

BOLTZMANN 
LEARNING

Free energy approximation:   (Zero temperature optimization)

STATISTICAL MECHANICS FOR NEW ALGORITHMS

log >(͎)

‣ Inverse problem and  dual TAP equations  
Decelle et al (2019)

Finite temperature optimization
4(͎|{͓E})

POSTERIOR DISTRIBUTION



HIGH TEMPERATURE EXPANSION AND TAP EQUATIONS

STATISTICAL MECHANICS FOR NEW ALGORITHMS
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‣ Expansion around   
‣ Find the minimum 

͂ = �
Local magnetizations

Free energy

TAP EQUATIONS

%(͂) = log
∑

͓,͔ I−͂)͎(͓,͔) = infQ ̬(Q, ͂)

log >(͎) = %(͂ = �)



HIGH TEMPERATURE EXPANSION AND TAP EQUATIONS

STATISTICAL MECHANICS FOR NEW ALGORITHMS

Figures from Gabriè et al (2015)



DUAL TAP EQUATIONS

QX+�
M = tanh

�

�͂
2�

N=�

.MNQX
N �

́͂
� � ͂(� � U)Q

X
M

�

�

‣ Mezard 2017

STATISTICAL MECHANICS FOR NEW ALGORITHMS

4(͎|{͓E}1E=�) = >−�I−)͓̂(͎)

‣ Assuming the data generated from un unknown RBM (teacher), we can consider the 
posterior distribution
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GENERALIZED HOPFIELD MODEL
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STATISTICAL MECHANICS FOR NEW ALGORITHMS

DUAL TAP EQUATIONS ‣ A teacher-student experiment

P=1
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