
AI & ML applications in 
Biophysical problems

Daniel Remondini
DIFA – daniel.remondini@unibo.it



AI in biophysics – our group

We are involved since 20y in biomedical data analysis & modelling, with 
many national and EU projects and collaborations (Systems Medicine, 
Oncology, Ageing, Agrofood, Public Health, Biophysical modelling):

VEO - Versatile Emerging infectious disease Observatory
E-MUSE – Complex microbial ecosystems multiscale modelling
GenoMed4all – Genomics & Personalized Medicine through AI 
INC-COST – International Nucleosome Consortium COST action
AIM (INFN) - Artificial Intelligence in Medicine



Background: biophysics

Heterogeneous data types: imaging, omics data (mRNA, DNA, metabolites, 
proteins, 3d structure of proteins and DNA, …)

Many possible tasks: data processing, classification/clustering, regression, 
image segmentation & enhancement, optimal embedding

Many biological data are badly conditioned (many variables few samples), 
with nontrivial noise (pdf) and relations (hard to model with simulations)



MR fingerprinting with DL: extracting physical parameters

FINGERPRINT approach to MR physical parameter estimation: 
- generate response patterns to specific MR sequences
- estimate parameters with a known pattern-parameter dictionary

Drawbacks: 
exponential growth of dictionary size
Time consuming mapping

Dictionary can increase up to 150 GB 
[Magn. Res. Med. 78(5) 1781–1789, 2017]



DL learns the transfer function:
estimate parameters from feature vectors

BARBIERI et al. 9

FIGURE 5 Global MAPE as a function of the memory size of the dictionary and the training set used to perform the template matching and the
training of the NN model, respectively. The global MAPE is evaluated by averaging the MAPE of each MR parameter.

DRONE [TAG R1.6]. For the dictionary-based approaches, the highest resolved dictionary used for the experiment that investigated the scaling
capabilities of NN and dictionary approaches was used to reduce the quantization errors. For the LR-ADMM reconstruction, the rank of the
approximation was set to 6, µ was set to 1 ⇥ 10�4 and 10 ADMM iterations were used with 20 CG iterations within each ADMM iteration. The
parameters were chosen based on what suggested in7 for simulated data.

2.6 In-vivo acquisition

The MRI acquisitions were performed using a 3.0 T GE SIGNA Premier scanner. Three volunteers were scanned under IRB approval using an 8-
channel head coil. One brain slice was acquired for each subject (FOV 22 x 22 cm, resolution 1.2 mm, slice thickness 5 mm). Data were acquired
using the MRF IR-FISP sequence with L = 1000 with one spiral interleave per TR ( bandwidth = +/- 125 kHz and readout length of 3.5 ms), which
results in undersampling the k-space. For each subject, the total acquisition time was 13s [TAG R2.2].

Quantitative T1, T2 andM0 mapswere reconstructed using the followingmethods: the proposedNNmodel trained following thewhole pipeline
depicted in Figure 2; the original dictionary approach; the iterative dictionary-based LR-ADMM approach and the deep learning-based method
DRONE [TAG R1.6]. For the dictionary-based approaches, a high-resolved dictionary was used to reduce quantization errors. For the LR-ADMM
reconstruction, the rank of the approximation was set to 6, µ was set to 0.1 and 5 ADMM iterations were used with 10 CG iterations within each
ADMM iteration. The parameters were chosen based on what suggested in7 for real acquired data.

The parameter maps obtained with the original dictionary approach were used as reference maps. For each reconstruction method, deviation
with the reference maps were evaluated using the MAPE, the MPE and the RMSE as global error measures. The pixel wise APE was used as local
error measure. The Lin’s concordance coe�cient50 was used as global measure of agreement.

3 RESULTS

3.1 Experiment with simulated data: scaling capabilities of NN and dictionary approaches

Figure 5 reports the global MAPEs between estimated and ground-truth parameters, obtained using the dictionary and NN approaches, as a
function of the dictionary and training set size, respectively. The global MAPE is the average of the parameter speci�cMAPE. Figure 5(a), (b), (c) and



Super resolution imaging
improve image quality (i.e. pixel density):
We have (re)implemented pre-trained WDSR-CNN that allow x2, x4, x8 
super resolution, for application to biomedical images

- DIV2k training set

- 105 parameters

- 28x28 patches



Raw (128x128) 4x Super-Res (512x512)

Biomedical
MR Imaging

PSNR = 20 · log10
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NN is better in the central
slices of scan (brain) and 
worse in the side slices (skull)
SR Training on natural
images learned complex
shapes/contours/structures



Phase map Susceptibility map 
QSM

• Susceptibility χ(r): response to 𝐵!
• Biomarkers: water, myelin, iron, calcium

• Useful for Neuroimaging

Mathematical problem: given phase map in k-space convert to χ
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Quantitative Susceptibility Mapping

Ill-posed problem: inversion has singularities in k-space (magic angle)
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In collaboration with Prof. R. Bowtell, Sir Peter Mansfield Institute, 
Nottingham UK,  Prof.ssa Claudia Testa DIFA & IRCCS Bellaria

Golden standard solution: combine multiple acquisitions (COSMOS)
Limits: time consuming



COSMOS - Calculation Of Susceptibility 
through Multiple Orientation Sampling

• Multiple head-orientation acquisition
• Long acquisition time
• Uncomfortable for the patient
• Accurate and precise reconstruction

TKD and COSMOS

TKD - Truncated K-space Division

• Single head-orientation acquisition
• Short acquisition time
• Numerical strategy: k-space cutoff
• Noisy reconstruction

COSMOS: “golden standard” for QSM
- requires multiple acquisitions



CNN learn COSMOS output using single orientation data

Better agreement between COSMOS and CNN



NLP & protein sequences

H2020 VEO Versatile Emerging infectious disease Observatory
WP2 Data-Mining tools: UNIBO co-leader
(Prof. S. Lycett, Univ. Edinburgh UK)

• Background: protein sequences as strings of symbols
• Aim: infer knowledge about virus from sequence alone

• We applied NLP AI algorithms (bi-LSTM and BERT-like) to encode protein
sequences into numerical vectors ("prot2vec") [Hie et al., Science 2021]

VIROLOGY

Learning the language of viral evolution and escape
Brian Hie1,2, Ellen D. Zhong1,3, Bonnie Berger1,4*, Bryan Bryson2,5*

The ability for viruses to mutate and evade the human immune system and cause infection, called
viral escape, remains an obstacle to antiviral and vaccine development. Understanding the complex rules that
govern escape could inform therapeutic design. We modeled viral escape with machine learning algorithms
originally developed for human natural language. We identified escape mutations as those that preserve viral
infectivity but cause a virus to look different to the immune system, akin to word changes that preserve a
sentence’s grammaticality but change its meaning. With this approach, language models of influenza
hemagglutinin, HIV-1 envelope glycoprotein (HIV Env), and severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2) Spike viral proteins can accurately predict structural escape patterns using sequence data
alone. Our study represents a promising conceptual bridge between natural language and viral evolution.

V
iral mutations that allow an infection
to escape from recognition by neutral-
izing antibodies have prevented the
development of a universal antibody-
based vaccine for influenza (1, 2) or HIV

(3) and are a concern in the development of
therapies for severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2) infection
(4, 5). Escape has motivated high-throughput
experimental techniques that perform causal
escape profiling of all single-residue muta-
tions to a viral protein (1–4). Such techniques,
however, require substantial effort to profile
even a single viral strain, and testing the es-
cape potential of many (combinatorial) muta-
tions inmany viral strains remains infeasible.
Instead, we sought to train an algorithm that

learns to model escape from viral sequence
data alone. This approach is not unlike learn-
ing properties of natural language from large
text corpuses (6, 7) because languages such as
English and Japanese use sequences of words
to encode complex meanings and have com-

plex rules (for example, grammar). To escape,
a mutant virus must preserve infectivity and
evolutionary fitness—itmust obey a “grammar”
of biological rules—and the mutant must no
longer be recognized by the immune system,
which is analogous to a change in the “mean-
ing” or the “semantics” of the virus.
Currently, computational models of protein

evolution focus either on fitness (8) or on func-
tional or semantic similarity (9–11), but we
want to understand both (Fig. 1A). Rather than
developing two separate models of fitness
and function, we developed a single model
that simultaneously achieves these tasks. We
leveraged state-of-the-art machine learning al-
gorithms called language models (6, 7), which
learn the probability of a token (such as an
Englishword) given its sequence context (such
as a sentence) (Fig. 1B). Internally, the lan-
guagemodel constructs a semantic representa-
tion, or an “embedding,” for a given sequence
(6), and the output of a language model en-
codes how well a particular token fits within
the rules of the language, which we call “gram-
maticality” and can also be thought of as “syn-
tactic fitness” (supplementary text, note S2).
The same principles used to train a language
model on a sequence of English words can
train a language model on a sequence of ami-
no acids. Although immune selection occurs
on phenotypes (such as protein structures),
evolution dictates that selection is reflected
within genotypes (such as protein sequences),
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Fig. 1. Modeling viral escape requires characterizing semantic change and
grammaticality. (A) Constrained semantic change search (CSCS) for viral escape
prediction is designed to search for mutations to a viral sequence that preserve
fitness while being antigenically different. This corresponds to a mutant sequence
that is grammatical (conforms to the structure and rules of a language) but has high
semantic change with respect to the original (for example, wild type) sequence.
(B) A neural language model with a bidirectional long short-term memory (BiLSTM)

architecture was used to learn both semantics (as a hidden layer output) and
grammaticality (as the language model output). CSCS combines semantic change
and grammaticality to predict escape (12). (C) CSCS-proposed changes to a news
headline (implemented by using a neural language model trained on English news
headlines) makes large changes to the overall semantic meaning of a sentence
or to the part-of-speech structure. The semantically closest mutated sentence
according to the same model is largely synonymous with the original headline.

on January 19, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 



1933-2009
Seasonal flu 

2009-2020
Pandemic 
SwH1N1

historic 1976
1918 Spanish flu (root)

Sub-sampled H1 
protein tree

• Evolution history of H1 Human flu 
in embedded space
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Human influenza strain evolution



Embedding of different hosts

SARS-CoV-2 Spike protein (up to Sept ‘20 – GISAID website data)



Human host

Adding recent variants: UK B.1.1.7

• B.1.1.7 has N501Y 
and deletion in spike 
protein

• Shows as its own 
‘distant’ cluster here 

• B.1.1.7 not in training 
data at all



Physical issues

• DL encoders (CNN, Transformers , "x"2vec) provide tools for 
dimensional embedding, just as recent spectral tools (ISOMAP, 
UMAP, based on discrete Laplace-Beltrami operator on 
networks) trying to reconstruct the underlying manifold in 
which data lie (link to Ricci flows & Heat kernels)

• Math/phys and AI research can complement on these topics, 
e.g. with applications to self- and semi-supervised learning
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Credits to all the PhDs and Postdocs in our group, in particular: 
Marco Barbieri for MRF (Prof. C. testa)
Nico Curti for Super-Res (Prof. G. Castellani)
Cristiana Fiscone for QSM (Prof. C. testa & Prof. R. Bowtell)
Francesco Durazzi and Lorenzo Dall'Olio for NLP (Prof. S. Lycett)


