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Setting the scene

Scientific computing has been enabling the HEP program 

• until today, software and computing have NOT been a limiting factor for Physics 

For this to remain true, we need to face the challenges ahead of us: 

• The usual challenge: computing remains a significant cost driver 

❖ → measure-optimise-measure cycles, Computing models undergo “adiabatic” (more or less) evolutions 

• The new challenge(s): ramp-up in global resource needs in the next decade(s) 

❖ e.g. HL-LHC, theory, astro-particle - in addition, new experiments 

❖ → further/deeper optimisations, evaluation and adoption of new (even “disruptive”) paradigms 

Additional complexity from uncertainties in quantitative definition of 
needs, and specification of computing environments
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Scale of the HEP challenges

HL-LHC hilumilhc.web.cern.ch  
• 10x trigger rate, 6x event complexity, plus detector complexity:  

>60x resources needs (main concern is disk)  

SKA (Square Kilometre Array) skatelescope.org 
• aims at collecting ~300 PB/yr 

major challenge on software, computing, data movement 

LSST (Large Synoptic Survey Telescope) lsst.org  
• aims at collecting ~50 PB/yr  

same as for SKA 

VIRGO-LIGO virgo-gw.eu, ligo.caltech.edu  
• multi-messenger astronomy 

processing velocity as a challenge, more than data volume
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NOTE: Not only more events, but also high-granularity detectors. HEP will 
pay the price of not having computing costs folded in since the design phase

Disclaimer: not a complete list, and 
only on experimental physics



E.g. ATLAS and CMS towards HL-LHC
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E.g. needed CPU cycles below 
~4x what is achievable with the 

technological improvement alone

Disk

CPU

https://twiki.cern.ch/twiki/bin/view/AtlasPublic/ComputingandSoftwarePublicResults 

https://twiki.cern.ch/twiki/bin/view/CMSPublic/CMSOfflineComputingResults



Can ML be “part of the solution”?
Most computationally-intense parts of our workflows are known 

• clear target 

A set of modular and challenging goals that fit 

• e.g. (relatively) easy to map our needs to solutions that may come from discriminative 
or generative models 

Data-driven modelling is viable 
• plenty of data (also simulated data) we understand well → fuel for training 

Access to high-performances computing infrastructures 

• we designed, deployed and operated the Worldwide LHC Computing Grid 

• ML Ops at scale → towards unprecedented levels (hyper-fast, low-power, ..) 

Synergy with the non-HEP world is growing *from the inside of HEP* 
• formulate a HEP problem in a way CS/ML practitioners can contribute to 

• in addition, large traction in HEP software/computing topics from new generations
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Discuss ML@HEP with a focus on ML?



Discuss ML@HEP with a focus on HEP activities?

ML in data acquisition and 
triggering  

• Bkg and trigger rate reduction  

• Signal specific trigger paths 

• Anomaly detection in data taking 

• Unsupervised new physics mining
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[ e.g. CMS - credits: M.Pierini ]

Trigger for all HEP experiments is a 
driver of high-performance ML 
applications in HEP 

• design of next-generation triggering 
processes as key enabler of real-time 
reconstruction (that in turn enables real-
time analysis) 

One of the challenges is the trade-off 
in algorithm complexity and 
performance under strict inference 
time constraints



Discuss ML@HEP with a focus on HEP activities?

ML in Event Reconstruction 

Online/offline reconstruction may be 
in part replaced by surrogate models 
(approximate → faster) or by novel 
algorithms (yielding unprecedented 
performance)  

• Charged particle tracking (GraphNN, 
vertexing, …) 

• Calorimeter reconstruction (local, 
clustering, …) 

• Particle flow (GraphNN, …) 

• Particle identification (boosted jets, 
isolation, …) 

• Pileup mitigation 

• Energy regression (end-2-end, …) 

• …
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ML in Event Simulation 

Event production through full/fast 
simulation today is extremely 
computing-intensive (up to 
potentially impacting the Physics 
reach of experiments). ML may 
help reducing such load 

• Calorimeter shower surrogate 
simulator 

• Analysis level simulator 

• Pile-up overlay generator 

• Monte Carlo integration  

• ML-enabled fast-simulation 

• Invertible full-simulation 
(probabilistic programming, …) 

• …



Discuss ML@HEP with a focus on HEP activities?
ML for Operations 

Application of ML on non-
collision (meta-)data may help 
to increase efficiency and 
reduce manpower burden in 
Ops, by automating selected 
tasks, creating intelligent/
adaptive systems, ultimately 
expedite the entire chain from 
data collection to final analysis 

• Detector control 

• Data quality monitoring 

• Operation intelligence 

• Predictive maintenance 

• …
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Methodology in ML 

“Ask not what ML can do for HEP, 
ask what physicists/scientists can 
do for ML” (semi-cit) 

Plenty of work that Hard Sciences 
can do to contribute to build a 
solid theory behind ML empirical 
success 

• Continual learning 

• Interpretability and explainability 

• Uncertainty quantification 

• Incorporating domain knowledge 

• Cast into optimisation problems 

• …



Discuss ML@HEP with a focus on HEP activities?
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nature.com/articles/s41586-018-0361-2



The evolution of ML adoption in HEP

Until few years ago, the overall ML@HEP scenario was based on 
exploiting field-specific knowledge for feature engineering 

The approach: 

• use physicist-designed high-level features as input to traditional shallow 
ML algorithms
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“Traditional” ML



Particle properties: energy resolution
Using ML to improve the determination of particle properties is now 
commonplace in all LHC experiments 

E.g. energy deposited in calorimeters is recorded by many sensors, which 
are clustered to reconstruct the original particle energy 

• CMS is training BDTs to learn corrections using all information available in the 
various calorimeter sensors - thus resulting in a sizeable improvement in resolution
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Improvements to the Z→e+e- 
energy scale and resolution from 

the incorporation of more 
sophisticated clustering and 
cluster correction algorithms  

(energy sum over the seed 5x5  
crystal matrix, bremsstrahlung  

recovery using supercluster, 
inclusion of pre-shower energy, 

energy correction using a 
multivariate algorithm)

betterbetter

[ 2015 ECAL detector performance plots, CMS-DP-2015-057. Copyright CERN, reused with permission ]



Particle identification

Similarly, ML is commonly used to identify particle types 

• e.g. LHCb uses NNs trained on O(30) features from all its subsystems, each of 
which is trained to identify a specific particle type  

• ~3x less mis-ID bkg /particle. Further estimates indicate that more advanced 
algorithms may reduce bkg by another ~50%
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[courtesy: M.Williams]



Discovery of the Higgs boson

ML played a key role in the discovery of the Higgs boson  

• especially in the diphoton analysis by CMS, where BDTs (used to improve the 
resolution and to select/categorise events) increased the sensitivity by 
roughly the equivalent of collecting ~50% more data 
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We were not supposed to discover the Higgs boson as early as 2012 

• Given how machine progressed, we expected discovery by end 2015 / mid 2016 

We made it earlier thanks (also) to ML

[courtesy M.Pierini]



Study of Higgs properties

E.g. analysis of 𝜏 leptons at LHC complex, as they decay before detection 
+ loss of subsequently produced neutrinos + bkg from Z decays 

• e.g. ATLAS divided the data sample into 6 distinct kinematic regions, and in each a 
BDT was trained using 12 weakly discriminating features [1] → improved sensitivity 
by ~40% vs a non-ML approach 
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[1]  JHEP 04 (2015) 117



High-precision tests of the SM

CMS and LHCb were the first to find evidence for the B0s→𝜇+𝜇- decay 
with a combined analysis [1] (as rare as ~ 1 / 300 billion pp collisions..) 

• BDTs used to reduce the dimensionality of the feature space - excluding the 
mass - to 1 dimension, then an analysis was performed of the mass spectra 
across bins of BDT response 

• decay rate observed is consistent  
with SM prediction with a precision  
of ~25%, placing stringent  
constraints on many proposed  
extensions to the SM 

To obtain the same sensitivity  
without ML by LHCb as a single  
experiment would have required  
~4x more data
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Mass distribution of the selected B0 
→ μ+μ− candidates with BDT > 0.5 [2] 

[1] Nature 522 68–72 (2015) 
[2] Phys.Rev.Lett. 118 (2017) 19, 191801



Since few years, ML@HEP exploits cutting-edge ML algorithms 

• multiple architectures of Neural Networks (NNs), depending on specific use-cases 

The approach: 

• use of full high-dimensional feature space to train Deep NNs; growing effort in HEP to 
skip the feature-engineering step 

❖ in analogy with progresses in Computer Vision and Natural Language Processing
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The evolution of ML adoption in HEP
“Traditional” ML Beyond “traditional” ML



Deep Learning for jet flavour identification

Why Deep NN? 

• Large volume of simulated events for training (fight overfitting, better generalisation) 

• High-level representations are tough → DeepNNs excel when fed with large 
volumes of low-level features 

E.g. CMS reviewed algos for the  
identification of heavy-flavour  
(b and c quarks) jets in pp at 13 TeV  

• DeepCSV algorithm [1]: NN-version of  
the combined secondary vertex (CSV)  
taggers used in LHC Run-1 
→ 15% improvement in relative  
efficiency w.r.t likelihood-based methods  

Further work → DeepJet [2] 

• use full lists of particle flow candidates, secondary vertices, ..  

• performance improvements, plus extension to quark-gluon tagging 
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[1] JINST 13 (2018) P05011 
[2] JINST 15 (2020) 12, P12012



Convolutional Neural Networks (CNN)

CNNs are based on strategies that decrease their sensitivity to the absolute 
position of elements in an image, making them more robust to noise 

• Deep CNNs capable to extract complex features from images 

❖ e.g. use in self-driving cars, owing to translation-invariant feature learning 

• particularly suited for HEP neutrino experiments 

❖ but also in simplified settings in collider experiments
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Industry:  
large adoption in computer vision tasks

HEP: 
3D imaging in detectors, event 

classification, ..



CNNs in NOνA

NuMI Off-axis νe Appearance (NOνA): study neutrinos through 
precision measurements of their oscillation properties 

NOνA detector and data collection strategy 

• filled with mineral oil, which emits light when a charged particle transverse it 

• a NOvA event consists of 2 images, taken from the top and from the side 

Novel ML algo [1] for NOvA: 2 parallel NNs inspired by 
GoogleNet 

• the NOvA CNN extracts features from both views simultaneously and 
combines them to categorise neutrino interactions in the detector 

→ improvement of 40% (with no loss in purity) in the efficiency 
of selecting νe  

• used as the event classifier in searches for appearance of νe [2] but also for a 
new type of particle called a sterile neutrino [3]
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[1] J. Instrum. 11, P09001 (2016) 
[2] Phys. Rev. Lett. 118, 231801 (2017) 
[3] J. Instrum. 12, P02017 (2017)[ novaexperiment.fnal.gov ]
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CNNs in NOνA



CNNs in MicroBooNE

MicroBooNE uses a large LArTPC to measure a suite of low energy ν 
cross sections, and investigate astro-particle physics  

MicroBooNE detector and data collection strategy 

• 170-ton of liquid argon to detect ν sent from the booster ν beam-line at FNAL 

• a MircoBooNE event corresponds to a 33 Mpixel image that may contain signal 
of ν interaction and bkg tracks by cosmic rays (size vary from cm’s to m’s) 

Faster-RCNN: a novel CNN method to detect ν interactions [1][2] 
• it uses spatially sensitive information from intermediate Conv layers to predict a 

bounding box that contains the secondary particles produced in a ν interaction 

→ GPU-accelerated CNNs show better performance than any 
conventional algos used by previous ν experiments 

• ideally suited to any task of real-time image classification and object detection
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[ microboone.fnal.gov ]
[1]  J. Instrum. 12, P03011 (2017) 
[2] IEEE Trans. Pattern Anal. Mach. Intell. 29, 061137 (2017) 



CNNs in MicroBooNE

E.g. neutrino selection and isolation in MicroBooNE from the output of the CNN
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The CNN does not get 
in input the info as 

from the yellow box …

..  but it is able to draw 
the red box, i.e. it 

successfully localises the 
neutrino interaction with 

high confidence.
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“.. but HEP is different ..”

Is it, really, to all extents?

D. Bonacorsi24

Detection of airports from satellite 
images (method: CNN)

Detection of neutrinos on cosmic 
background event (method: CNN)

Bonus feature!



DeepNNs for particle ID and particle properties

A general tactics (TPCs, CALOs..): represent the data as a 2D or 3D 
image → the problem can be cast as a computer vision task 

• even 4D, including timing information.. 

Deep Learning techniques based on DeepNNs to reconstruct 
images from pixel intensities are good candidates to be used to 
identify particles and extract parameters in many experiments 

• promising DL architectures not limited to CNN, but also Recurrent NN (RNN) 

Examples: 

• whenever e.g. LArTPCs is the chosen detection technology, see previous 
examples, see also DUNE, .. 

• More: b-tagging in collider experiments can also exploit RNNs
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RNNs successful at processing long sequences of data 

• based on recurrent neurons (with connections pointing backwards) 

• able to treat variable-length input and to process time series by 
accumulating and using all the info across a sequence 

❖ e.g. current Google translation service
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Recurrent Neural Networks (RNN)

Industry:  
managing “time series” 

(audio, video, natural language processing)

HEP: 
classifiers capable to process complex 

signals, or variable-lenght inputs (tracks, 
particles in jets, etc)
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RNNs on b-quark identification

Beauty (b) quarks identification is important at LHC 

• frequently produced in Higgs/top decays, predicted in SUSY decays, and more 

• identification of jets from HE b-quarks (time scale is picosecs, flight range is 
<cm) requires finding a displaced vertex, typically contain 10-50 particles, # of 
potential discriminating features varies on a per-jet basis  

RNNs methods can use low-level particle features within a jet 
• order the jet particles into a sequence (e.g. ranking by incompatibility with 

originating from pp collision point), feed a set of features for each particle to 
the RNN, and train to discriminate between b-quark jets and other jets 

→ ATLAS: mis-identification rate reduced by 4x w.r.t non-ML algo, 
with an additional 3x reduction when RNN itself used as an input 
feature in the subsequent training of a BDT or NN [1] 

→ CMS: similar approaches [2], + promising results with more 
sophisticated RNN structures in a simplified setting [3]
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[1] ATL-PHYS- PUB-2017-003 and 013 
[2] CMS-DP-2017-005 
[3] Phys. Rev. D 94, 112002 (2016)
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AEs are feed-forward NN (unsupervised) able to compress input 
into a lower-dimensional representation (“latent-space”, a data-
specific compression) and to reconstruct the output 

VAEs are generative models instead → learn the parameters of a 
probability distribution representing the data → can generate 
new input data samples

Autoencoders (AE) and Variational-AE (VAE)

AEs in Industry:  
dimensionality reduction, denoising, …

VAEs in HEP: 
VAEs could isolate new physics as 

outliers of known distributions 



For all LHC experiments, VAEs are proposed to be trained on 
known physics processes to be used to build “thresholds” to isolate 
previously unseen physics events as outliers 

• training does not depend on any specific new physics signature → 
assumptions-free, and complementary to classic LHC searches for new physics 
(typically based on model-dependent hypothesis testing) 

Outcome: a catalogue of anomalous events to be further scrutinised 

• recurrent event topologies in the catalogue may inspire focussed searches and 
model building 

• plugging this technique in the trigger of LHC exps could avoid discard of 
potentially interesting events 

A promising approach to extend the physics reach of LHC
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VAEs for new physics mining at LHC
[1]  JHEP05 (2019) 036



Generative Adversarial Networks (GAN)

GANs as generative ML models 

• designed as 2-NN game where one (generator NN) maps noise to images, 
and the other (discriminator NN) classifies the images as real vs fake (the best 
generator being the one that maximally confuses its adversary)
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Industry:  
image editing, data generation, security, ..

HEP: 
Simulate the detector response 

(promising alternative to traditional 
simulation solutions)



Simulation with VAEs and GANs

Promising alternatives for Fast Simulation may be built on recent 
progress in high fidelity fast generative models 

• e.g. GANs and VAEs → ability to sample high dimensional feature 
distributions by learning from existing data samples 

Some simplified first attempts at using such techniques for 
simulation saw orders of magnitude increase in speed over 
existing Fast Simulation techniques, which all HEP experiments 
would largely benefit from 

• not yet reached the required accuracy, though (inherent shortcomings of the 
methods, instabilities in training such NNs, ..)
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E.g. Simulation with GANs

E.g. CaloGAN, a new FastSimulation technique, to simulate 
3D HEP showers in multi-layer ECAL systems with GANs 

• basically, CaloGAN can generate the reconstructed Calo image 
using random noise, skipping the GEANT and RECO steps  - thus 
making it 10k faster than GEANT 
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CaloGAN composite generator (left) and discriminator (right) 

[1] Phys.Rev.D 97 (2018) 1, 014021



Towards Quantum ML for HEP
“How QC can be used for ML (in HEP)?” 

• namely: “how quantum computers can learn from (HEP) data?" 

Possible approaches to this question: 

• foundational approach that reformulates learning theory in a quantum setting 

• efforts to find quantum algos that speed up ML with regards to computational 
complexity measures 

• a near-term perspective: develop new ML applications tailored for NISQ devices 

The near-term perspective: start from quantum devices available today 
and investigate how they can be used to solve a ML problem 

• circuit-based quantum computers → outsource the prediction part of ML to QC 
(i.e. predominantly used to compute the prediction of a QML model that can be 
trained classically) 

• quantum annealers → outsource the training part of ML to QC (namely, proposed 
to optimise classical models, i.e. map an optimization problem to a QUBO 
instance)
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Exploring a Quantum-GNN for tracking  [1/2]

Charged particle tracking (aka “tracking”) is the cornerstone of event reco in 
particle physics 

• in a nutshell, the task of associating sparse detector measurements (aka ”hits”) to the trajectory 
of a given particle that caused them 

Reconstructing particle trajectories with high accuracy will be one of the major 
challenges e.g. in the HL-LHC experiments 

• increase in the expected # of simultaneous collisions + high detector occupancy → tracking 
extremely demanding in terms of computing resources 

Today’s state-of-the-art algos rely on a Kalman filter-based approach 

• robust and provide good physics performance, but they are expected to scale worse than 
quadratically with the increasing # of simultaneous collisions 

What’s next? Investigating several possibilities 

• deep learning, i.e. introduce an image-based interpretation of the detector data and use CNNs 

• representation based on space-points arranged in connected graphs could have an advantage 
given high dimensionality and sparsity of the tracking data → HEPtrkX project developed a set 
of GNNs to perform hits and segments classification 

Or.. go quantum! (next)
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Exploring a Quantum-GNN for tracking  [2/2]

Towards Q-GNN: explore a quantum perspective of this GNN 
architecture, i.e. re-implements the set of GNNs as quantum 
circuits.
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The Quantum Edge Network implemented as a Tree 
Tensor Network, a hierarchical quantum classifier. The 
architecture uses Ry rotation gates and CNOT gates. 
A single output qubit is measured.

Q-GNN performance. Validation loss and AUC displayed 
for various # iterations. Results for two epochs, 
corresponding to 2900 steps (1 epoch = 1450 updates)

[1] EPJ Web of Conferences 245, 09013 (2020)



QAML for di-𝛾 event classification  [1/2]

The use of quantum adiabatic ML is proposed to classify events 
between the H→𝛾𝛾 signal (S) and irreducible bkg (B) events with 2 
uncorrelated 𝛾 

• 8 high-level features are measured from the di-𝛾 system 

• using such 8 features and their products as input, n=36 weak classifiers ci(x𝜏) 
are computed, assuming values in the range [−1, 1], S being represented by 
positive values 

• a strong classifier is then constructed from a binary linear combination of the 
weak classifiers (with parameter ѡi ∈ {0, 1} for each weak classifier index i) 

• The parameters ѡi are then determined by the optimisation of a carefully 
crafted QUBO 
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QAML for di-𝛾 event classification  [2/2]

The optimization is both run on the D-
Wave 2X quantum annealer (QA) 
system and performed with simulated 
annealing (SA) using variable fractions 
of the training dataset
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Nature 550, 375–379 (2017)

SA and QA are typically on par, and 
not providing obvious classification 
advantage over BDT and DNN, 
although a slight advantage with a 
small training dataset is noted
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(some of these aspects covered also at the “AI and HPC” kick-off workshop) 

A variety of technology research aspects, and related assets. 

Osmosis with “Istituto Nazionale di Fisica Nucleare” (INFN) 

• one example: INFN Cloud → cloud.infn.it (contact: D.Salomoni) 

Plus (not an exhaustive list): 

• (Big) Data Lake for HEP, AI-orchestrated data management, distributed caches, etc 

• prototyping a “cloudified” MLaaS systems [1] for HEP use-cases (and beyond) 

• connection with the hls4ml [2] project: ultra-fast ML inference on FPGAs  

• connection to LHC efforts on heterogeneous computing  

• … 

→ topical items for follow-up (post kick-off) meetings.

Computing infrastructures/tools
[1] arxiv.org/abs/2007.14781 (subm. to Comp.Sw.Big.Sci.) 
[2] fastmachinelearning.org 
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Enhancement of currently-successful NN architectures? Quantum ML? 
Neuromorphic computing? …? 

The HEP community has always been able to contribute to and profit from 
technology progress. My personal opinion → HEP will do good if it speeds up 
in: 1) embracing contamination with neighbouring disciplines; 2) supporting 
career recognition of young HEP physicists passionate and committed to 
research in software/computing for HEP, including ML/DL/QML..

The future (?)
?



Conclusion

ML is ubiquitous in HEP, and continues to grow 

• chosen techniques and adoption levels vary a lot across experiments  

• techniques embraced over the years changed, and are still evolving 

Cooperation among HEP and CS/ML researchers is crucial 

• ability to engage ML experts on HEP problems 

• ability to open up to non-HEP tools and frameworks, invest in education of 
youngest HEP physicists on advanced ML skills 

If HEP will be able to drive this process, ML in HEP will play a crucial 
role towards meeting future challenges of data-intensive science at 
the energy and intensity frontier
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Thanks for the attention

Thanks for material, discussion, inspirations to: 

• M. Pierini, J.R. Vlimant, P. Vischia, M. Williams, S. May, S. Gleyzer, D. Bourilkov, 
co-authors of “ML at the energy and intensity frontiers of particle physics” [1], 
co-authors of the “ML in HEP - Community White Paper” [2], co-authors of “A 
Roadmap for HEP Software and Computing R&D for the 2020s” [3], 
coordinators of and contributor to the CMS ML forum, coordinators of and 
contributors to the IML team. With apologies to everyone I might have not 
mentioned.

D. Bonacorsi41

Credits
[1] Nature 560, 41–48 (2018) 
[2] J. Phys. Conf. Series 1085 (2018) 022008 
[3] Comp. Softw. Big Sci. 3, 7 (2019)


